

Application Note 7: SoundWireSM Audio Testing with APx and LnK

Introduction

AudioPrecision APx オーディオアナライザを使用して、SoundWire インターフェイスで半導体オ ーディオデバイスをテストすることは、コンセプトとしてはシンプルです。テストの方針と実装は他 の IC デバイスと変わりません。ここでの課題は、SoundWire インターフェイスとの接続と、 SoundWire デバイスの設定です。

APx には、PDM(パルス密度変調)やデジタルシリアル(I²S)などのオプションのデジタルイン ターフェイスがありますが、SoundWire バスへ直接のインターフェイスはありません。 AudioPrecision 社では APx のデジタルインターフェイスと測定対象(DUT)の SoundWire イ ンターフェイスとの間のブリッジツールを開発した LnK 社と提携しています

Audio Precision と LnK は、PDM と PCM デジタルフォーマットの両方をサポートする SoundWire デバイスオーディオテスト用のテストソリューションを提供します。

What is SoundWire?

SoundWire は、MIPI Alliance によってモバイルエレクトロニクス業界向けに開発されたデジタルオ ーディオバス規格です(本書末尾の参考文献を参照)。この参画企業によって、コーデック、MEMS マイク、パワーアンプ、ワイヤレスインターフェースなどのオーディオ周辺機器向け SoundWire 仕 様を実装する半導体デバイスが開発されました。通常これらの IC デバイスは、スマートフォン、タブ レット、ウェアラブルデバイスなどで使用されます。

SoundWireは、ホストコントローラ(アプリケーションプロセッサ)と製品内の各オーディオデバ イス間の相互接続を減らすことで、製品設計とコストをシンプルにする新技術です。基本的な SoundWire システム(Fig.1)は、多くの Slave デバイスと Master デバイス(ホストコントローラ) 間でオーディオを制御し、ストリーミングするための2つのマルチドロップバスライン(Clock と Data)を提供して、複数のチャネルのオーディオを異なるデータレートのデバイス間で2方向にス トリーミングすることができます。

この技術は、従来のデジタルオーディオトランスポートバス(I²S, SPI などの PCM および PDM)や、 デバイス機能の制御である I²C バスに置き換わります。 SoundWire の仕様は、MIPI Alliance のメン バーが利用できます。

Figure 1 Basic SoundWire system (left) and multi-lane SoundWire system (right). Multi-lane systems extend bandwidth by adding data lines.

The APx-LnK SoundWire Audio Test System

Fig.2 は、APx555 オーディオアナライザ、LnK SoundWire プロトコルアナライザ、および SoundWire コーデック評価ボード間の相互接続を示しています。 以下の図では、アナログオー ディオ信号がコーデック評価ボードのヘッドフォンジャックと APx555 の Unbalanced Input/Output の間に接続されています。.

Figure 2 APx-LnK SoundWire audio test system (top) and block diagram (bottom) for testing a SoundWire audio codec. The LnK SoundWire analyzer provides a digital interface between the SoundWire port of the codec and the Audio Precision APx audio analyzer.

それぞれの機器は Windows PC と USB で接続され、APx コントロールソフトウェアと LnK SoundWire ツールソフトウェアで制御されます。

LnK アナライザは、SoundWire でコーデックボードと接続します。

APx555 は、APx デジタルシリアルI/O(DSIO) モジュールを使用して、最大 8ch の双方向 I²S PCM オーディオを提供します。 DSIO トランスミッタ/レシーバの接続は、LnK アナライザのマル チピン GPI コネクタに接続されています。 LnK アナライザは Bit Clock を提供し、オーディオデー タの方向に応じて Word Clock と Data を受信または送信します。

MEMS マイクや低電力 D 級アンプ IC などのテストには PDM フォーマットのデータが必要になり ます。APx555 は、LnK アナライザの GPI コネクタにルーティングされた APx PDM モジュール を使用して、2ch の PDM 信号を送受信できます。 LnK アナライザは、Bit Clock を APx PDM モジュールに提供し、Data をシンクまたはソースにします。

The SoundWire Test Process

SoundWire デバイスをテストするステップは以下の通りです。

- 1. SoundWire インターフェイスを列挙して初期化します
- 2. 必要な機能(例:フィルタ、ゲイン、ミュート、音量など)用に SoundWire デバイスコン トロールレジスタを設定します
- デバイスから/デバイスへ LnK アナライザを介して APx オーディオアナライザにオーディオ をルーティングします。
- 4. APx アナライザでテストを実施します

ステップ1と2には、DUT内のSoundWireインターフェイスの詳細、SoundWireインターフェイスを介してアクセスされるデバイス内の機能制御レジスタの知識、LnK SoundWire ツールソフトウェアの知識が必要です。

ステップ3では、2つの機器間のデジタルオーディオ接続を適切に設定し、LnK アナライザで実行されるLnK ソフトウェアスクリプトを使用して、2つの機器とSoundWire デバイスのオーディオポート間でオーディオコンテンツのストリーミングを可能にします。 LnK アナライザは、DUT と APx アナライザとの間のブリッジになります。

ステップ4には、LnK アナライザへの信号パスと一連の自動オーディオ測定を定義する APx ソフトウェアプロジェクトファイルが含まれています。

Hardware Integration

テストシステムのハードウェアのセットアップは簡単です。 LnK が提供するケーブルを使用して、APx DSIO および PDM I / O ポートを LnK SoundWire プロトコルアナライザ GPI / PDM コネクタ(Fig.3)に接続します。

Figure 3 LnK SoundWire Protocol Analyzer and connectors. Upper right: Clocks, GPI, and SoundWire. Lower right: Power, USB, and Monitor Signals.

LnK は、LnK GPI インタフェースを APx PDM および DSIO モジュールに直接接続できるコネクタ ケーブルアクセサリを開発しました(Fig.4 および Fig.5)。 各コネクタアクセサリには、LnK SoundWire プロトコルアナライザに必要な APx DSIO または PDM インターフェイス設定を示すユ ーザーマニュアルが含まれています。

Figure 4 The PCM adapter cable connects the SoundWire Protocol Analyzer GPI connector multi-channel signals to the APx DSIO transmitter (shown here) or receiver.

Figure 5 The PDM adapter cable connects the LnK SoundWire Protocol Analyzer GPI connector to the APx PDM transmitter and receiver.

APx Cabless

Audio Precision では、LnK コネクタケーブルアクセサリが使用できない場合に GPI コネク タピンに直接接続できる DSIO および PDM モジュール用のケーブルを提供しています。

PCM connections with APx DSIO cables

DSIO オプション付属の CAB-DSIO ケーブルキットには、DB15M⇔ピンソケット(2pin、信号お よびグランド)ケーブルが含まれています。 CAB-BPSI-2P-LCAP Low capacitance ケーブル も使用できます。 各ケーブル(ピンペア)は色とラベルで識別されます。

Figure 6 APx DSIO connector pin-out.

Figure 7 APx DSIO cable kits. CAB-DSIO left, CAB-BPSI-2P-LCAP right.

2pin ソケットを使用して、LnK SoundWire アナライザの GPI コネクタピンに直接接続します。 シールドをLnK アナライザの GPI ピンペアの下側(グランド)2~20 pin に接続します。 各 DSIO Clock または Data は、GPI コネクタの上部および下部に挿入されます。 以下の表は、特定のピンを示しています。

DSIO Data1~4 を対応する GPI 15,13,11,9 pin に接続します。DSIO Bit Clock を GPI 5 pin、 Frame Clock を GPI pin 7 に接続します。Master Clock は不要です。

Pin	Signal	Direction	
1	I2C SDA	Input & output	Ī
3	I2C SCL	Output	-
5	PCM BCLK	Output	-
7	PCM LRLCK	Output	-
9	PCM DATA 4	Input & output	19 0 0 0 0 0 0 0 0 0 0 1
11	PCM DATA 3	Input & output	20 0 0 0 0 0 0 0 0 0 0 2
13	PCM DATA 2	Input & output	
15	PCM DATA 1	Input & output	
17	GPI0/MCLK	Input	
19	TRIG IN	Input]
220	Ground	ł	1

Figure 8 LnK SoundWire Analyzer GPI interface pin assignments for PCM mode.

DSIO Receiver Settings

アプリケーションが SoundWire オーディオ入力を受信するには、APx DSIO レシーバの以下の入力 設定を行います。

- Multiple Data Lines
- "Bit Depth"を"32" bits に設定
- "Bit and Frame Dir."を"In"に設定
- "Bit Clock Edge Sync Ins:"を"Falling"に設定
- "Logic Level"をSoundWire アナライザでプログラムされたレベルに設定

SoundWire アナライザのスクリプトファイルは、対応する GPI 出力設定用に設定する必要があります。 動作モードを「PCM-8 Channel OUT」に設定してください。

Multi Purpose Connector Configuration Signaling Level 1.8 V					
PCM - 8 Channel OUT 👻					
SoundWire Bus Clock 🔹					

Figure 9 LnK SoundWire Script Editor settings for GPI PCM output.

DSIO Transmitter Settings

SoundWire オーディオ出力を生成するアプリケーションでは、APX DSIO トランスミッタの出力設定を次のように設定します。

- Multiple Data Lines
- "Bit Depth"をテスト中のデバイスの SoundWire チャンネルの Word length に応じて設定します。Bit Depth が Word length よりも大きい場合、サンプルの LSB は切り捨てられ、ディザリングの効果はありませんが、切り捨てによる歪みが発生します。Bit Depth が Word length よりも小さい場合、使用されていないビットは 0 で埋められ、効果はありません。
- "Bit & Frame Dir."を"In"に設定
- "Bit Clock Edge Sync" Ins and Outs を "Falling" に設定
- "Logic Level"を SoundWire アナライザでプログラムされたレベルに設定

SoundWire アナライザのスクリプトファイルは、対応する GPI 入力設定用に設定する必要があります。 Operation Mode を "PCM-8 Channel IN"に設定してください。

Multi Purpose Connector Configuration					
Signaling Level	1.8	V			
Operation Mode PCM - 8 Channel IN 🔹					
Bit Clock Reference	SoundWi	re Bus Clock	•		

Figure 10 LnK SoundWire Script Editor settings for GPI PCM input.

PDM connections with APx CAB-PDM cables

Audio Precision PDM インターフェイスは、CAB-PDM ケーブルを使用して2ピン信号をLnK SoundWire アナライザの GPI 入力に接続します。SoundWire アナライザは、PDM 信号は入出力 用に最大4つのステレオ入出力、もしくは2つのステレオ入力と2つのステレオ出力の組み合わせ で利用することができます。APx PDM インターフェイスは、入力と出力のための1つのステレオチ ャンネルペアをサポートしており、APx PDM トランスミッタとレシーバに接続するステレオチャン ネルペアを選択する必要があります。

Figure 11 APx PDM interface and CAB-PDM cable kit.

	FUNCTION							
Pin	GPI		PDM 8 CH IN		PDM 4 IN / 4 OUT		PDM 8 CH OUT	
1	I2C_SDA	I/O	I2C_SDA	١/O	I2C_SDA	I/O	I2C_SDA	I/O
3	I2C_SCL	I/O	I2C_SCL	I/O	I2C_SCL	I/O	I2C_SCL	I/O
5	GPI6	IN	PDM_BCKI	OUT	PDM_BCKI	ουτ	PDM_BCKI	OUT
7	GPI5	IN	PDM_BCKO	OUT	PDM_BCKO	ουτ	PDM_BCKO	OUT
9	GPI4	IN	PDM_DATA4	IN	PDM_DATA4	OUT	PDM_DATA4	OUT
11	GPI3	IN	PDM_DATA3	IN	PDM_DATA3	OUT	PDM_DATA3	OUT
13	GPI2	IN	PDM_DATA2	IN	PDM_DATA2	IN	PDM_DATA2	OUT
15	GPI1	IN	PDM_DATA1	IN	PDM_DATA1	IN	PDM_DATA1	OUT
17	GPI0	IN	GPI0	IN	GPI0	IN	GPI0	IN
19	TRIG IN	IN	TRIG IN	IN	TRIG IN	IN	TRIG IN	IN
220	Ground							

Figure 12 LnK SoundWire analyzer GPI interface PDM function modes.

Multi Purpose Connector Configuration					
Signaling Level	1.8 V				
Operation Mode	General Purpose In	puts 🔻			
	General Purpose In	puts			
	PDM - 8 Channel IN	J			
	PDM - 4 Ch. IN & 4	Ch. OUT			
	PDM - 8 Channel O	UT			
	PCM - 8 Channel IN	l l			
	PCM - 8 Channel O	UT			

Figure 13 LnK SoundWire Script Editor settings for the GPI interface, corresponding to the GPI Function chart.

Fig.12 は、LnK SoundWire アナライザの GPI コネクタの機能モードを示しています。 必要な PDM 入出力の組み合わせのモードを設定し、それに応じて APx PDM I / O ケーブルを接続します。 この際、 SoundWire アナライザスクリプトの SoundWire バス信号の GPI ピンへの信号配線を考慮 する必要があります。

APX CAB-PDM ケーブルシールドを、LnK アナライザの GPI コネクタの下の行(グランド) 2~20 pin に接続します。

APx PDM トランスミッタのビットクロックを GPI 5pin(PDM_BCKI)に接続します。 APx PDM レシーバのビットクロックを GPI 7pin(PDM_BCKO)に接続します。

LnK SoundWire アナライザは常に Bit Clock を供給するため、APx PDM トランスミッタま たはレシーバの Bit Clock は常に Slave (Bit Clk Dir は In に設定) でなければなりません。

APx PDM Transmitter Settings

PDM Input 設定

- "Bit Clk Dir:"を In に設定
- "Decimation"をx64 に設定
- "Logic Level"を SoundWire アナライザでプログラムされたレベルに設定

APx PDM Receiver Settings

PDM Output 設定

- "Bit Clk Dir:"を In に設定
- "Logic Level"を SoundWire アナライザでプログラムされたレベルに設定

SoundWire Device Jitter Tolerance Testing

DUT との SoundWire インターフェイスでジッタテストを実行する場合は、内部 PLL をバイパスし て外部入力クロックを使用するように LnK アナライザを設定できます。LnK アナライザの CLOCKS Input を APx555 リアパネルの SYNC OUT に接続し、必要なクロック周波数(通常は SoundWire バスクロック周波数の 2 倍)を供給するように APx を設定します。

(Note: ジッタテストには APx アナライザに Advanced Master Clock (AMC)が必要になります。AMC は APx555 には標準で搭載されており、APx52x/58x シリーズはオプションです)

次に、APx ジッタジェネレータ(Clocks パネル)をオンにして、Jitter Generator の ["]Apply To:" コントロールを ["]Reference / Sync["]に設定します(Flg.14)。 これにより、APx リアパネル SYNCH OUT 信号が有効になります。 APx ジッタレベル、波形、および周波数を設定して、ジッタが 含まれた SoundWire クロックおよびデータラインを生成します。

Clocks	X					
Clocks	Ľ					
Reference/Sync O	utput					
Output Rate:	Custom					
Custom Rate:	12.2880 MHz 📄 🔥					
Sync Out Level:	3.300 V					
Sync Out Polarity:	Normal					
Reference/Sync Input						
Timebase Reference:	Internal 🔻					
Jitter Generator						
Apply To:	Reference/Sync 🔻 💽					
Waveform:	Sine					
Frequency:	10.0000 kHz 🗸 🗧					
	🛛 Sec 💿 UI					
Peak Level:	20.00 ns					
EQ:	None 🔻 🐼					

Figure 14 APx Sync Output and Jitter Generator setup for SoundWire jitter tolerance testing.

SoundWire Bus Event-Triggered Measurements

APx オーディオアナライザの FFT は、LnK アナライザによって生成された外部イベントでトリガ できます。BNC-2pin ケーブルを使用して、BNC の APx555 リアパネルの Trigger を LnK アナ ライザの TRIG OUT 1 または TRIG OUT 2 コネクタに接続します。次に、LnK アナライザスクリ プトを設定して、SoundWire バス上の該当するイベントが検出されるとトリガ信号を出力します。 APx アナライザは、パルスが受信されると、DUT の出力でオーディオ波形を取得します。 SoundWire バスマスタが起動やクロック停止などの DUT への変更を開始すると、オーディオトラ ンジェントとグリッチを取得することがあります。

Figure 15 APx audio measurements of the codec's analog headphone output. The codec's SoundWire interface was driven with a 1 kHz digital test tone from the DSIO transmitter through the LnK SoundWire Protocol Analyzer to the SoundWire port on the codec.

APx Audio Measurement Software

APx ソフトウェアでは、LnK SoundWire プロトコルアナライザから SoundWire デバイスに オーディオを流す自動測定を簡単に設定できます。オーディオ出力を測定し、測定レポート生成 まで実施できます。

Fig.15は、レベル、THD + N 歪み、周波数、および LnK SoundWire プロトコルアナライザの GPI 入力にフルスケールのデジタルオーディオストリームを適用したスペクトラムを含む、 SoundWire インターフェイスコーデックのヘッドフォン出力の測定値を示しています。

Fig.16は、SoundWire インターフェイスに1 kHz~24 kHz の-1 dBFS 正弦波チャープ信号を 適用して(APx の Continuous Sweep)駆動された、コーデックヘッドフォン出力のストップ バンド周波数動作の測定結果を示しています。この性質の測定には、APx および LnK で利用可能 なリアルタイム測定テクニックが必要です。

Figure 16 Headphone Output Stopband measurement with SoundWire input.

LnK Tools Software

LnK Tools ソフトウェアは、SoundWire Script-Builder (Fig.17) と SoundWire Analyzer と Traffic Generator (Fig.18) で構成されています。ScriptBuilder ソフトウェアを使用して、 Analyzer および Traffic Generator ソフトウェア用のスクリプトファイルを構築します。

優れたスクリプトファイルを作成するには、SoundWire DUT や、デバイスが SoundWire 仕様か らどのように逸脱する可能性があるか、そのほか control registers, device-specific function registers, proper start-up protocol, data frame shape, timing,の詳細な知識が必要です。.

Analyzer および Traffic Generator ソフトウェアは、LnK アナライザのハードウェアを制御して、スクリプトビルダーで作成されたスクリプトファイルによって定義されたバストラフィックを取得したり、バストラフィックを生成したりします。発生した問題をデバッグするためにTraffic Generator が実行されている間に SoundWire バス解析を実行することができます。

Fraffic Initialization Sequence of Even	ts							
Control Words	Bus Reset	Loop Gegin	Start Stream	Set SSP	Clock Pause	Comment		
PING	Frame Star	t toop End	Stop Stream	PDM Enable	Data Line Error			
READ	18/23	WRITE	1	DA=1 RA=0x9101.	D=0xD2			
WRITE	11 24	Comment		Port 1 config (AOC)			
Company Company	III 25	CONFIGURE DATA	PORT	DA=1, DP=1, BSEL	=1, L=0; S=A0, INV	0, MODE+0	(1000 mp)	
USER DEFINED	111 26	PREPARE CHANNELS		DA=1, DP=1, Ch1=1, Ch2=0, Ch3=0, Ch4=0, Ch5=0, Ch6=0, Ch7=0, Ch8=0				
	10-27	Frame Start		1, ROW=0, COL=0, PREQ=0, SS=0x81, PHY=0, DS=Valid, P=Valid, NAK=0, ACK=0				
General Purpose Macros	1 38	Loop Begin		CNT=400				
DEVICE ENUMERATION	iii 29	Frame Start		15, ROW=0, COL=0, PREQ=0, SS=0x81, PHY=0, DS=Valid, P=Valid, NAK=0, ACK=0				
	12 70	Loop End						
SET FRAME SHAPE	00 31	READ		DA=1, RA=0x0104, CD=0x00				
PREPARE CHANNELS	18 32	CONFIGURE CHANNELS		DA=1 DP=1 ESEL=1 Ch1=1 Ch2=0 Ch3=0 Ch4=0 Ch5=0 Ch6=0 Ch7=0 Ch6=0				
THE MALLIMATING	1 33	B Comment		Port 2 config (HP Out)				
CONFIGURE DATA PORT	01.34	CONFIGURE DATA PORT PREPARE CHANNELS Frame Start		DA=1_DP=2_6SEL=1_L=0_S=A1_INV=0_MODE=0 DA=1_DP=2_Ch1=1_Ch2=1_Ch3=0_Ch4=0_Ch5=0_Ch6=0_Ch7=0_Ch6=0 1_ROW=0_COL=0_PREQ=0_SS=0x81_PHY=0_DS=Valid_P=Valid_NAK=0_ACK=0				
control of customers	10.35							
CONFIGURE CHANNELS	III 30							
SET PAGE ADDRESS	10.30	Loop Begin		15 ROW-0 COL-0 RECO-0 SS-0/R1 ReV-0 DS-Valid R-Valid NAK-0 ACK-0				
BREBARE OLOFY FEDR	= 30	Frame start		13, NOWED, COLED, PREQED, 33=0x81, PHT=0, D3=V8lid, P=V8lid, NAK=0, ACK=0			ID, NAK=D, ALK=D	
PREPARE CLOCK STOP	UN AD	READ		Dav1 Bar0x0204 (De0x00				
ACTIVATE CLOCK STOP		CONFIGURE CHANNELS		Dast DRs2 BSE st Chist Ch2s1 Ch3s0 Chas0 Ch5s0 Ch5s0 Ch2s0 Ch2s0				
	1 42	Comment		Port 3 contin (SPD)	P	and a wind a write at an	1 0, 011 0, 010 0	
SENU ULBUG MESSAGE	H 43	CONFIGURE DATA PORT		DA=1 DP=3 RSEL=1 L=0 S=A2 INV=0 MODE=0				
	Script Bact D		-		-1, 1-0, 3-14, 111			
	scope r dst Pl	second						
	Insert a PI	NG frame at least every	32 frames					
	ACK READ	/ WRITE frames	Enable VCD ou	tput			FINALIZE	

Figure 17 LnK SoundWire ScriptBuilder Sequence display for a Cirrus Logic CS42L42 codec DAC test.

Figure 18 The LnK SoundWire Protocol Analyzer software interface. A script file has been loaded that streams audio from the APx DSIO transmitter to a Cirrus Logic CS42L42 SoundWire input and then through the device to its analog headphone output.

Software Integration

Audio Precision 製品とLnK 製品の両方でソフトウェアライブラリが提供されています。 これら を使用して、2つの機器を完全に自動化して SoundWire オーディオテストシステムに統合する独 自のソフトウェアアプリケーションを開発することができます。 ライブラリは、.NET 開発ツール、 LabVIEW、その他のソフトウェア開発システムで使用できます。.

Test System Information

Fig.2 に示す SoundWire オーディオテストシステムコンポーネントは、Audio Precision と LnK から別々に入手する必要があります。(コーンズテクノロジー社ではどちらも取り扱っております。)

ltem	Description	Part Number
		APx525
		APx555
APX Audio Analyzer	Any modular APx audio analyzer	APx582
/ maryzer		APx585
		APx586
	Digital serial option for APx	APX-DSIO
Options	PDM option for APx	APX-PDM
	Advanced Master Clock for APx	APX-AMC
		CAB-DSIO
Cable Kits	AFX 0310	CAB-BPSI-2P-LCAP
	APx PDM	CAB-PDM

Audio Precision

LnK

ltem	Description		
	SoundWire Protocol Analyzer		
	Traffic Generator		
Ontions	PDM Hardware Option		
Options	PCM Hardware Option		
	Multilane Option		
Cable Kits	PDM Cable Kit (for APx-PDM)		
	PCM Cable Kit (for APx-DSIO)		

Contacts

Audio Precision 5750 SW Arctic Drive Beaverton, OR 97005 USA

+1 (800) 231-7350 sales@ap.com www.ap.com **LnK sprl** 44 rue des Combattants 4624 Romsee Belgium

+32 473 75 75 82 info@lnk-tools.com www.lnk-tools.com

Resources

MIPI Alliance

SoundWire Webinar http://mipi.org/learning-center/webinars

MIPI[®] service marks and logo marks are owned by MIPI Alliance, Inc. and any use of such marks by Audio Precision is under license. Other service marks and trade names are those of their respective owners.

© 2016 Audio Precision, Inc. All Rights Reserved. XVI1020140000