E-BAND GAP™

FLANGE ADAPTER

Gapwaves offers an easy-to-mount GAP^{TM} flange adapter for the E-band. By using the innovative GAP^{TM} technology around the waveguides, the adapter removes the need of electrical contact and the need of screws. Suitable to use in high-speed production lines, millimeter-wave laboratories and internal high frequency packaging.

The GAP™ Flange Adapter in summary

- Saves time when assembling measurement circuits
- Low losses in high-frequency circuits
- No electrical contact required

E-band GAP™ Flange Adapter

Technical specifications

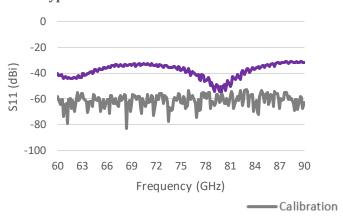
Size	\emptyset 19.0 × 4.8 mm
Frequency range	60 – 90 GHz
Connecting flange type	WR12
Reflection loss	<-30 dB
Transmission loss	< 0.06 dB

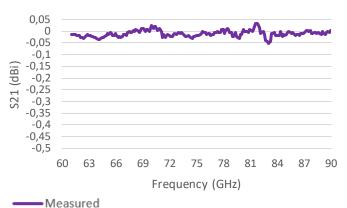
GAP Waveguides

GAP[™] waveguides is a novel packaging technology for millimeter wave and terahertz circuits and components. The technology is based on an Artificial Magnetic Conductor (AMC) enables contactless propagation of electromagnetic waves at GHz and THz frequencies, significantly reducing transmission losses due to imperfect electrical contact. The versatile GAP™ waveguide technology provides unique possibilities of deep integration between antennas, diplexers and radio electronics.

About Gapwaves

Gapwaves AB was founded with the intention of commercializing innovative antenna products. Our mission is to provide leading solutions for millimeter wave and terahertz applications in radio communication, radars and wireless sensing. Based in Gothenburg, Sweden, Gapwaves holds all the leading patent rights to the GAP waveguide technology. Gapwaves also holds patents for several antenna products including the Eleven antenna and self-grounded Bowtie UWB/MIMO antennas for scientific, military, and telecom use.


info@gapwaves.com www.gapwaves.com


MEASURED DATA

for back to back configuration

Typical Reflection Loss

Typical Transmission Loss

MEASURING SETUP

